From Infinitary Term Rewriting to Cyclic Term Graph Rewriting and back

Patrick Bahr
paba@diku.dk

University of Copenhagen
Department of Computer Science

6th International Workshop on Computing with Terms and Graphs
Saarbrücken, Germany, April 2nd, 2011
Outline

1. Infinitary Term Rewriting

2. Term Graph Rewriting
 - Partial Order Model of Infinitary Rewriting
 - Convergence on Term Graphs

3. Outlook
Outline

1. Infinitary Term Rewriting

2. Term Graph Rewriting
 - Partial Order Model of Infinitary Rewriting
 - Convergence on Term Graphs

3. Outlook
Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Example (Infinite lists)

\[\text{Rnats} = \{ \text{from}(x) \rightarrow x : \text{from}(s(x)) \} \]

Intuitively this converges to the infinite list 0:1:2:3:4:5:...
Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$\mathbb{N} = \{x : \text{from}(\text{from}(s(x)))\}$

intuitively this converges to the infinite list $0:1:2:3:4:5:...$.
Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{\text{nats}} = \{ \text{from}(x) \rightarrow x : \text{from}(s(x)) \}$$

$$\text{from}(0)$$
Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{\text{nats}} = \{ \text{from}(x) \to x : \text{from}(s(x)) \}$$

$$\text{from}(0) \to 0 : \text{from}(1)$$
Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

\[\mathcal{R}_{\text{nats}} = \begin{cases} \text{from}(x) \rightarrow x : \text{from}(s(x)) \\ \text{from}(0) \rightarrow^2 0 : 1 : \text{from}(2) \end{cases} \]
Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful:

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

\[\mathcal{R}_{\text{nats}} = \left\{ \text{from}(x) \rightarrow x : \text{from}(s(x)) \right\} \]

\[\text{from}(0) \rightarrow^3 0 : 1 : 2 : \text{from}(3) \]
Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

\(\mathcal{R}_{nats} = \{ \text{from}(x) \to x : \text{from}(s(x)) \} \)

\(\text{from}(0) \to^4 0 : 1 : 2 : 3 : \text{from}(4) \)
Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing \(\pi \)
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

\[R_{nats} = \left\{ \text{from}(x) \rightarrow x : \text{from}(s(x)) \right\} \]

\[\text{from}(0) \rightarrow^5 0 : 1 : 2 : 3 : 4 : \text{from}(5) \]
Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$\mathcal{R}_{nats} = \left\{ \text{from}(x) \rightarrow x : \text{from}(s(x)) \right\}$$

$$\text{from}(0) \rightarrow^6 0 : 1 : 2 : 3 : 4 : 5 : \text{from}(6)$$
Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

$$R_{nats} = \left\{ \text{from}(x) \rightarrow x : \text{from}(s(x)) \right\}$$

$$\text{from}(0) \rightarrow^6 0 : 1 : 2 : 3 : 4 : 5 : \text{from}(6) \rightarrow \ldots$$
Non-Terminating Rewriting Systems

Termination guarantees that every reduction sequence leads to a normal form, i.e. a final outcome.

Non-terminating systems can be meaningful

- modelling reactive systems, e.g. by process calculi
- approximation algorithms which enhance the accuracy of the approximation with each iteration, e.g. computing π
- specification of infinite data structures, e.g. streams

Example (Infinite lists)

\[R_{nats} = \{ \text{from}(x) \rightarrow x : \text{from}(s(x)) \} \]

\[\text{from}(0) \rightarrow^6 0 : 1 : 2 : 3 : 4 : 5 : \text{from}(6) \rightarrow \ldots \]

Intuitively this converges to the infinite list $0 : 1 : 2 : 3 : 4 : 5 : \ldots$.
What is infinitary rewriting?

- formalises the outcome of an infinite reduction sequence
- allows reduction sequences of any ordinal number length
- deals with (potentially) infinite terms
Infinitary Rewriting

What is infinitary rewriting?
- formalises the outcome of an infinite reduction sequence
- allows reduction sequences of any ordinal number length
- deals with (potentially) infinite terms

Why consider infinitary rewriting?
- model for lazy functional programming
- semantics for non-terminating systems
- semantics for process algebras
- arises in cyclic term graph rewriting
Formalising Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

\[d(s, t) = 2^{-\text{sim}(s,t)} \]

\[\text{sim}(s, t) = \text{minimum depth } d \]
\[\text{s.t. } s \text{ and } t \text{ differ at depth } d \]
Formalising Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:
 \[d(s, t) = 2^{-\text{sim}(s, t)} \]

\[\text{sim}(s, t) = \text{minimum depth } d \text{ s.t. } s \text{ and } t \text{ differ at depth } d \]

Example

\[
\begin{array}{ccc}
 & f & \\
 a & f & a \\
 & b & c & g \\
 & s & & t \\
\end{array}
\]
Formalising Infinitary Term Rewriting

Complete metric on terms
- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

\[d(s, t) = 2^{-\text{sim}(s, t)} \]

\[\text{sim}(s, t) = \text{minimum depth } d \text{ s.t. } s \text{ and } t \text{ differ at depth } d \]
Formalising Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

\[d(s, t) = 2^{-\text{sim}(s, t)} \]

\[\text{sim}(s, t) = \text{minimum depth } d \] s.t. \(s \) and \(t \) differ at depth \(d \)

Example

\[d(s, t) = 2^{-1} \]
Formalising Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:
 \[d(s, t) = 2^{-\text{sim}(s, t)} \]

\[\text{sim}(s, t) = \text{minimum depth } d \] s.t. \(s \) and \(t \) differ at depth \(d \)

Example

\[
\begin{align*}
\text{d}(s, t) &= 2^{-1} \\
\text{d}(u, v) &= 2^{-2}
\end{align*}
\]
Formalising Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:
 \[d(s, t) = 2^{-\min\{d|s\neq t, s\text{ and } t\text{ differ at depth } d\}} \]

Example

\[
\begin{align*}
\text{Example} & \\
\text{sim}(s, t) &= \min \text{ depth } d \text{ s.t. } s \text{ and } t \text{ differ at depth } d \\
\end{align*}
\]
Formalising Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

\[d(s, t) = 2^{-\text{sim}(s, t)} \]

\(\text{sim}(s, t) = \text{minimum depth } d \) s.t. \(s \) and \(t \) differ at depth \(d \)

Example

\[d(s, t) = 2^{-1} \]

\[d(u, v) = 2^{-2} \]
Formalising Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

\[d(s, t) = 2^{-\text{sim}(s, t)} \]

\[\text{sim}(s, t) = \text{minimum depth } d \text{ s.t. } s \text{ and } t \text{ differ at depth } d \]

Example

Example:

\[d(s, t) = 2^{-1} \]

\[d(u, v) = 2^{-2} \]
Formalising Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:

\[d(s, t) = 2^{-\text{sim}(s, t)} \]

\[\text{sim}(s, t) = \text{minimum depth } d \text{ s.t. } s \text{ and } t \text{ differ at depth } d \]
Formalising Infinitary Term Rewriting

Complete metric on terms

- terms are endowed with a complete metric in order to formalise the convergence of infinite reductions.
- metric distance between terms:
 \[d(s, t) = 2^{-\text{sim}(s,t)} \]
 \[\text{sim}(s, t) = \text{minimum depth } d \text{ s.t. } s \text{ and } t \text{ differ at depth } d \]
 \[\text{sim}(s, t) = \text{maximum depth } d \text{ s.t. truncated at depth } d, s \text{ and } t \text{ are equal} \]

Example

1 level

\[d(f, f) = 2^{-1} \]

2 levels

\[d(f, f) = 2^{-2} \]
Weak Convergence of Transfinite Reductions

Weak convergence via metric \(d \)

- convergence in the metric space \((\mathcal{T}^\infty(\Sigma, \mathcal{V}), d) \)
- \textbf{depth of the differences} between the terms has to tend to infinity
Example: Weak Convergence

\[\text{from} \quad \rightarrow \quad \text{from}(s(x)) \]
Example: Weak Convergence

\[\text{from} \quad \rightarrow \quad \text{from} \]

\[0 \quad \rightarrow \quad 1 \]

\[\text{from}(x) \rightarrow x : \text{from}(s(x)) \]
Example: Weak Convergence

\[\text{from}(x) \rightarrow x : \text{from}(s(x)) \]
Example: Weak Convergence

\[\text{from}(x) \to x : \text{from}(s(x)) \]
Example: Weak Convergence

\[\text{from} \]

\[
\begin{array}{c}
\text{from} \\
\Downarrow \\
0 \\
\end{array}
\]

\[
\begin{array}{c}
\text{from} \\
\uparrow \\
0 \\
\end{array} \quad 1 \text{ level} \quad \begin{array}{c}
\text{from} \\
\downarrow \\
1 \\
\end{array}
\]

\[
\begin{array}{c}
\text{from} \\
\leftarrow \\
2 \\
\end{array} \quad \begin{array}{c}
\text{from} \\
\rightarrow \\
3 \\
\end{array}
\]

\[
\text{from}(x) \rightarrow x : \text{from}(s(x))
\]
Example: Weak Convergence

\[\text{from} (x) \rightarrow x : \text{from} (s(x)) \]
Example: Weak Convergence

\[\text{from}(x) \rightarrow x : \text{from}(s(x)) \]
Example: Weak Convergence

\[\text{from}(x) \rightarrow x : \text{from}(s(x)) \]
Example: Weak Convergence

\[\text{from } 0 \rightarrow x : \text{from}(s(x)) \]
Example: Weak Convergence

\[\text{from} \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} \rightarrow x : \text{from}(s(x)) \]
Transfinite Reductions

Example (Infinite lists)

\[R_{zip} = \begin{cases}
 zip(nil, y) & \rightarrow \text{nil} \\
 zip(x, nil) & \rightarrow \text{nil} \\
 zip(x : x', y : y') & \rightarrow (x, y) : zip(x', y')
\end{cases} \]
Transfinite Reductions

Example (Infinite lists)

\[R_{zip} = \begin{cases}
 \text{zip}(\text{nil}, y) \rightarrow \text{nil} \\
 \text{zip}(x, \text{nil}) \rightarrow \text{nil} \\
 \text{zip}(x : x', y : y') \rightarrow (x, y) : \text{zip}(x', y')
\end{cases} \]

\[\text{zip(from}(0), a : b : c : \text{nil}) \]
Transfinite Reductions

Example (Infinite lists)

\[R_{zip} = \begin{cases}
 \text{zip}(\text{nil}, y) \rightarrow \text{nil} \\
 \text{zip}(x, \text{nil}) \rightarrow \text{nil} \\
 \text{zip}(x : x', y : y') \rightarrow (x, y) : \text{zip}(x', y')
\end{cases} \]

\[
\text{zip}(\text{from}(0), a : b : c : \text{nil}) \xrightarrow{\omega} \text{zip}(0 : 1 : 2 : 3 : 4 \ldots, a : b : c : \text{nil})
\]
Transfinite Reductions

Example (Infinite lists)

\[R_{\text{zip}} = \begin{cases}
 \text{zip}(\text{nil}, y) \rightarrow \text{nil} \\
 \text{zip}(x, \text{nil}) \rightarrow \text{nil} \\
 \text{zip}(x : x', y : y') \rightarrow (x, y) : \text{zip}(x', y')
\end{cases} \]

\[\text{zip}(\text{from}(0), a : b : c : \text{nil}) \rightarrow^\omega \text{zip}(0 : 1 : 2 : 3 : 4 \ldots, a : b : c : \text{nil}) \rightarrow (0, a) : \text{zip}(1 : 2 : 3 : 4 : \ldots, b : c : \text{nil}) \]
Transfinite Reductions

Example (Infinite lists)

\[R_{zip} = \begin{cases}
 \text{zip}(\text{nil}, y) \rightarrow \text{nil} \\
 \text{zip}(x, \text{nil}) \rightarrow \text{nil} \\
 \text{zip}(x : x', y : y') \rightarrow (x, y) : \text{zip}(x', y')
\end{cases} \]

\[\text{zip(from(0), a : b : c : nil)} \rightarrow^\omega \text{zip(0 : 1 : 2 : 3 : 4 : \ldots, a : b : c : nil)} \]
\[\rightarrow (0, a) : \text{zip(1 : 2 : 3 : 4 : \ldots, b : c : nil)} \]
\[\rightarrow (0, a) : (1, b) : \text{zip(2 : 3 : 4 : \ldots, c : nil)} \]
Transfinite Reductions

Example (Infinite lists)

\[R_{\text{zip}} = \begin{cases}
zip(\text{nil}, y) & \rightarrow \text{nil} \\
zip(x, \text{nil}) & \rightarrow \text{nil} \\
zip(x : x', y : y') & \rightarrow (x, y) : zip(x', y')
\end{cases} \]

\[zip(\text{from}(0), a : b : c : \text{nil}) \xrightarrow{\omega} zip(0 : 1 : 2 : 3 : 4 \ldots, a : b : c : \text{nil}) \]
\[\rightarrow (0, a) : zip(1 : 2 : 3 : 4 \ldots, b : c : \text{nil}) \]
\[\rightarrow (0, a) : (1, b) : zip(2 : 3 : 4 \ldots, c : \text{nil}) \]
\[\rightarrow (0, a) : (1, b) : (2, c) : zip(3 : 4 \ldots, \text{nil}) \]
Transfinite Reductions

Example (Infinite lists)

\[R_{zip} = \begin{cases}
zip(nil, y) & \rightarrow \text{nil} \\
zip(x, nil) & \rightarrow \text{nil} \\
zip(x : x', y : y') & \rightarrow (x, y) : zip(x', y')
\end{cases} \]

\[zip(from(0), a : b : c : nil) \rightarrow^\omega \text{zip}(0 : 1 : 2 : 3 : 4 : \ldots, a : b : c : nil) \]

\[\rightarrow (0, a) : \text{zip}(1 : 2 : 3 : 4 : \ldots, b : c : nil) \]

\[\rightarrow (0, a) : (1, b) : \text{zip}(2 : 3 : 4 : \ldots, c : nil) \]

\[\rightarrow (0, a) : (1, b) : (2, c) : \text{zip}(3 : 4 : \ldots, nil) \]

\[\rightarrow (0, a) : (1, b) : (2, c) : \text{nil} \]
Transfinite Reductions

Example (Infinite lists)

\[\mathcal{R}_{\text{zip}} = \begin{cases}
\text{zip}(\text{nil}, y) \to \text{nil} \\
\text{zip}(x, \text{nil}) \to \text{nil} \\
\text{zip}(x : x', y : y') \to (x, y) : \text{zip}(x', y')
\end{cases} \]

\[
\text{zip}(\text{from}(0), a : b : c : \text{nil}) \to^\omega \text{zip}(0 : 1 : 2 : 3 : 4 \ldots, a : b : c : \text{nil}) \\
\to (0, a) : \text{zip}(1 : 2 : 3 : 4 \ldots, b : c : \text{nil}) \\
\to (0, a) : (1, b) : \text{zip}(2 : 3 : 4 \ldots, c : \text{nil}) \\
\to (0, a) : (1, b) : (2, c) : \text{zip}(3 : 4 \ldots, \text{nil}) \\
\to (0, a) : (1, b) : (2, c) : \text{nil}
\]

final outcome is a **finite term**!
Strong Convergence of Transfinite Reductions

Weak convergence is hard to deal with

- there might be terms only reachable after more than ω steps
- orthogonal systems are not confluent
- not necessarily normalising
Strong Convergence of Transfinite Reductions

Weak convergence is hard to deal with

- there might be terms only reachable after more than ω steps
- orthogonal systems are not confluent
- not necessarily normalising

Strong convergence via increasing redex depth

- conservative underapproximation of convergence in the metric space
- rewrite rules have to be applied at (eventually) increasingly large depth
- the limit is then defined by the metric space
 \[\rightsquigarrow \]
- for strong convergence the depth of redexes has to tend to infinity
Example: Weakly but not Strongly Converging

\[f(g(x)) \rightarrow f(g(g(x))) \]
Example: Weakly but not Strongly Converging

\[f(g(x)) \rightarrow f(g(g(x))) \]
Example: Weakly but not Strongly Converging

\[f(g(x)) \rightarrow f(g(g(x))) \]
Example: Weakly but not Strongly Converging

\[f(g(x)) \rightarrow f(g(g(x))) \]
Example: Weakly but not Strongly Converging

\[f(g(x)) \rightarrow f(g(g(x))) \]
Example: Weakly but not Strongly Converging

\[f(g(x)) \rightarrow f(g(g(x))) \]
Example: Weakly but not Strongly Converging

\[f(g(x)) \rightarrow f(g(g(x))) \]
Example: Weakly but not Strongly Converging

\[f(g(x)) \rightarrow f(g(g(x))) \]
Example: Weakly but not Strongly Converging

\[f(g(x)) \rightarrow f(g(g(x))) \]
Example: Weakly but not Strongly Converging

\[f(g(x)) \rightarrow f(g(g(x))) \]
Example: Weakly but not Strongly Converging

\[f(g(x)) \rightarrow f(g(g(x))) \]
Example: Weakly and Strongly Converging

\[g(c) \rightarrow g(g(c)) \]
Example: Weakly and Strongly Converging

\[g(c) \rightarrow g(g(c)) \]
Example: Weakly and Strongly Converging

\[g(c) \rightarrow g(g(c)) \]
Example: Weakly and Strongly Converging

\[g(c) \rightarrow g(g(c)) \]
Example: Weakly and Strongly Converging

\[g(c) \rightarrow g(g(c)) \]
Example: Weakly and Strongly Converging

\[g(c) \rightarrow g(g(c)) \]
Example: Weakly and Strongly Converging

\[g(c) \rightarrow g(g(c)) \]
Example: Weakly and Strongly Converging

\[g(c) \rightarrow g(g(c)) \]
Example: Weakly and Strongly Converging

\[g(c) \rightarrow g(g(c)) \]
Example: Weakly and Strongly Converging

\[g(c) \rightarrow g(g(c)) \]
Example: Weakly and Strongly Converging

$g(c) \rightarrow g(g(c))$
Example: Weakly and Strongly Converging

\[g(c) \rightarrow g(g(c)) \]
Outline

1. Infinitary Term Rewriting

2. Term Graph Rewriting
 - Partial Order Model of Infinitary Rewriting
 - Convergence on Term Graphs

3. Outlook
Moving to Term Graphs – Why?

Simulating infinitary term rewriting

- term graphs allow to **finitely represent** rational terms
- certain infinite term reductions can be represented as finite term graph reductions [Kennaway et al.]
- infinitary term rewriting \Leftrightarrow cyclic term graph rewriting?
Moving to Term Graphs – Why?

Simulating infinitary term rewriting

- Term graphs allow to **finitely represent** rational terms
- Certain infinite term reductions can be represented as finite term graph reductions [Kennaway et al.]
- Infinitary term rewriting \(\Leftrightarrow\) cyclic term graph rewriting?

Calculi with explicit sharing and recursion

- Adding **letrec** to \(\lambda\)-calculus breaks confluence
- However: unique **infinite normal forms** can be defined [Ariola & Blom]
- Infinitary confluence?
Moving to Term Graphs – Why?

Simulating infinitary term rewriting

- term graphs allow to \textit{finitely represent} rational terms
- certain infinite term reductions can be represented as finite term graph reductions [Kennaway et al.]
- infinitary term rewriting \Leftrightarrow cyclic term graph rewriting?

Calculi with explicit sharing and recursion

- adding \texttt{letrec} to λ-calculus breaks confluence
- however: unique \textit{infinite normal forms} can be defined [Ariola & Blom]
- infinitary confluence?

We need a infinitary rewriting counterpart on term graphs!
Convergence on Term Graph Reductions – How?

A metric on term graphs?

- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?
Convergence on Term Graph Reductions – How?

A metric on term graphs?
- A metric seems too "unstructured" for the rich structure of term graphs.
- How should sharing be captured by the metric?
- What is an appropriate notion of depth in a term graph?

Example
A metric on term graphs?

- A metric seems too "unstructured" for the rich structure of term graphs.
- How should sharing be captured by the metric?
- What is an appropriate notion of depth in a term graph?

Example
Convergence on Term Graph Reductions – How?

A metric on term graphs?
- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

Example

![Diagram of a triangle with depth label n]
Convergence on Term Graph Reductions – How?

A metric on term graphs?

- a metric seems too “unstructured” for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

Example
Convergence on Term Graph Reductions – How?

A metric on term graphs?
- A metric seems too “unstructured” for the rich structure of term graphs.
- How should sharing be captured by the metric?
- What is an appropriate notion of depth in a term graph?

Example
Convergence on Term Graph Reductions – How?

A metric on term graphs?

- a metric seems too “unstructured” for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

Example
Convergence on Term Graph Reductions – How?

A metric on term graphs?
- a metric seems too "unstructured" for the rich structure of term graphs
- how should sharing be captured by the metric?
- what is an appropriate notion of depth in a term graph?

Example

![Diagram showing depth comparison]

\[d' < d \]
Reconsidering Infinitary Term Rewriting

Infinitary rewriting on terms “more structure”

- the metric on terms is beautifully simple
- it is just enough for convergence on terms
Reconsidering Infinitary Term Rewriting

Infinitary rewriting on terms “more structure”
- the metric on terms is beautifully simple
- it is just enough for convergence on terms

More structure on term graphs
- for term graphs, we need more structure
- but: maybe we can obtain a metric space in the end
Reconsidering Infinitary Term Rewriting

Infinitary rewriting on terms “more structure”
- the metric on terms is beautifully simple
- it is just enough for convergence on terms

More structure on term graphs
- for term graphs, we need more structure
- but: maybe we can obtain a metric space in the end

Infinitary term rewriting with more structure
- borrowing from domain theory
- partial orders have been widely used to obtain a more structure view on terms
Partial Order Model of Infinitary Rewriting

Described on the example of terms

Partial order on terms

- **Partial terms**: terms with additional constant \perp (read as “undefined”)
- **Partial order** $\leq \perp$ reads as: “is less defined than”
- $\leq \perp$ is a complete semilattice ($= \text{cpo} + \text{glbs of non-empty sets}$)
Partial Order Model of Infinitary Rewriting

Described on the example of terms

Partial order on terms

- **partial terms**: terms with additional constant ⊥ (read as “undefined”)
- **partial order** \(\leq \perp \) reads as: “is less defined than”
- \(\leq \perp \) is a **complete semilattice** (= cpo + glbs of non-empty sets)

Convergence

- formalised by the **limit inferior**:

\[
\liminf_{\iota \to \alpha} t_{\iota} = \bigsqcup_{\beta < \alpha} \bigcap_{\beta \leq \iota < \alpha} t_{\iota}
\]

- intuition: eventual persistence of nodes of the terms
- weak convergence: limit inferior of the **terms** of the reduction
- strong convergence: limit inferior of the **contexts** of the reduction
An Example

Reduction sequence for \(f(x, y) \rightarrow f(y, x) \)
An Example

Reduction sequence for $f(x, y) \rightarrow f(y, x)$
An Example

Reduction sequence for $f(x, y) \rightarrow f(y, x)$
An Example

Reduction sequence for $f(x, y) \rightarrow f(y, x)$
An Example

Reduction sequence for $f(x, y) \rightarrow f(y, x)$
An Example

Reduction sequence for $f(x, y) \rightarrow f(y, x)$
An Example

Reduction sequence for \(f(x, y) \rightarrow f(y, x) \)

Weak convergence
An Example

Reduction sequence for $f(x, y) \rightarrow f(y, x)$

Weak convergence
An Example

Reduction sequence for $f(x, y) \rightarrow f(y, x)$

Weak convergence

Strong convergence
Properties of the Partial Order Model on Terms

Benefits

- more fine-grained than the metric model
- more intuitive than the metric model
- subsumes metric model
Properties of the Partial Order Model on Terms

Benefits

- more fine-grained than the metric model
- more intuitive than the metric model
- subsumes metric model

Theorem (total p-convergence = m-convergence)

For every reduction S in a TRS the following equivalences hold:

1. $S: s \xrightarrow{p} t$ is total iff $S: s \xrightarrow{m} t.$ (weak convergence)
2. $S: s \xrightarrow{p} t$ is total iff $S: s \xrightarrow{m} t.$ (strong convergence)
A Partial Order on Term Graphs – How?

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \(\leq \) on term trees?
- We need a means to substitute \(\bot \)’s.
Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_\bot on term trees?
- We need a means to substitute \bot's.

\bot-homomorphisms $\varphi: g \to \bot h$

- homomorphism condition suspended on \bot-nodes
- allow mapping of \bot-nodes to arbitrary nodes
A \bot-Homomorphism

$\varphi: g \rightarrow h$
A \perp\text{-Homomorphism}

\[
\varphi: \begin{array}{c}
g \\
\perp \\
\perp
\end{array} \to \begin{array}{c}
\perp \\
g \\
g
\end{array}
\]
\(\bot\)-Homomorphisms as a Partial Order

Proposition (partial order on terms)

For all \(s, t \in \mathcal{T}_\infty(\Sigma_\bot)\):

\[s \leq_\bot t \text{ iff } \exists \varphi: s \rightarrow_\bot t \]
⊥-Homomorphisms as a Partial Order

Proposition (partial order on terms)

For all $s, t \in \mathcal{T}^\infty(\Sigma_\bot)$: $s \leq_\bot t$ iff $\exists \varphi: s \rightarrow_\bot t$

Theorem

For all $g, h \in \mathcal{G}^\infty(\Sigma_\bot)$, let $g \leq^1_\bot h$ be defined iff there is some $\varphi: g \rightarrow_\bot h$.

The pair $(\mathcal{G}_C^\infty(\Sigma_\bot), \leq^1_\bot)$ forms a **complete semilattice**.
\(-\)-Homomorphisms as a Partial Order

Proposition (partial order on terms)

For all \(s, t \in T^\infty(\Sigma_\bot)\):

\[s \leq_\bot t \iff \exists \varphi: s \to_\bot t \]

Theorem

For all \(g, h \in G^\infty(\Sigma_\bot)\), let \(g \leq^1_\bot h\) be defined iff there is some \(\varphi: g \to_\bot h\).

The pair \((G^\infty_C(\Sigma_\bot), \leq^1_\bot)\) forms a complete semilattice.

Alas, \(\leq^1_\bot\) has some quirks!

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{f} \\
\text{c} \\
\text{f}
\end{array}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{c} \\
\text{c}
\end{array}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\text{c} \\
\text{c}
\end{array}
\end{array}
\end{array}
\]
\(\perp\)-Homomorphisms as a Partial Order

Proposition (partial order on terms)

For all \(s, t \in T^\infty(\Sigma_\perp)\):

\[s \leq_\perp t \text{ iff } \exists \varphi : s \rightarrow_\perp t\]

Theorem

For all \(g, h \in G^\infty(\Sigma_\perp)\), let \(g \leq^1_\perp h\) be defined iff there is some \(\varphi : g \rightarrow_\perp h\).

The pair \((G^\infty_C(\Sigma_\perp), \leq^1_\perp)\) forms a complete semilattice.

Alas, \(\leq^1_\perp\) has some quirks!

\[
\begin{array}{ccc}
\xymatrix{& f \\
\& c \\
& \leq^1_\perp \\
& \& f \\
\& c \\
\& \& c
\end{array}
\]
Proposition (partial order on terms)

For all $s, t \in \mathcal{T}^{\infty}(\Sigma_{\bot})$: $s \leq_{\bot} t$ iff $\exists \varphi: s \rightarrow_{\bot} t$

Theorem

For all $g, h \in \mathcal{G}^{\infty}(\Sigma_{\bot})$, let $g \leq_{\bot}^{1} h$ be defined iff there is some $\varphi: g \rightarrow_{\bot} h$.

The pair $(\mathcal{G}^{\infty}_{C}(\Sigma_{\bot}), \leq_{\bot}^{1})$ forms a complete semilattice.

Alas, \leq_{\bot}^{1} has some quirks!

- introduces sharing
- total term graphs not necessarily maximal
- but: we should not dismiss it too fast!
Avoiding Sharing

Definition (injective \(\bot \)-homomorphisms)

For all \(g, h \in G^\infty(\Sigma_\bot) \), let \(g \leq_2 \bot h \) be defined iff there is some \(\varphi: g \rightarrow \bot h \) injective on all (non-\(\bot \)-) nodes.
Avoiding Sharing

Definition (injective \bot-homomorphisms)

For all $g, h \in G^\infty(\Sigma_\bot)$, let $g \leq_2^\bot h$ be defined iff there is some $\varphi: g \rightarrow_\bot h$ injective on all (non-\bot-) nodes.

Greatest lower bounds w.r.t. \leq_2^\bot

\[
\begin{array}{c}
\text{f} \\
\downarrow \\
\text{c} \\
\end{array}
\quad
\begin{array}{c}
\text{f} \\
\downarrow \\
\text{c} \\
\end{array}
\quad
\begin{array}{c}
\text{f} \\
\uparrow \\
\text{c} \\
\end{array}
\
\begin{array}{c}
\text{c} \\
\end{array}
\quad
\begin{array}{c}
\text{c} \\
\end{array}
\quad
\begin{array}{c}
\text{c} \\
\end{array}
\]

In particular, \leq_2^\bot is not a complete semilattice!
Avoiding Sharing

Definition (injective \perp-homomorphisms)

For all $g, h \in G^{\infty}(\Sigma_{\perp})$, let $g \leq_{\perp}^2 h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$ injective on all (non-\perp-) nodes.

Greatest lower bounds w.r.t. \leq_{\perp}^2

$$\begin{array}{ccc}
f & \perp^2 & f \\
c & c & c \\
\end{array} = ?$$
Avoiding Sharing

Definition (injective \bot-homomorphisms)
For all $g, h \in \mathcal{G}_\infty(\Sigma_\bot)$, let $g \leq_{\bot}^2 h$ be defined iff there is some $\varphi: g \rightarrow_{\bot} h$ injective on all (non-\bot-) nodes.

Greatest lower bounds w.r.t. \leq_{\bot}^2

\[
\begin{array}{c}
\text{f} \\
\downarrow \\
\text{c} \\
\end{array}
\quad
\begin{array}{c}
\text{f} \\
\downarrow \\
\text{c} \\
\end{array}
\quad
\begin{array}{c}
\text{f} \\
\downarrow \\
\bot \\
\end{array}
\quad
\begin{array}{c}
\text{f} \\
\downarrow \\
\text{c} \\
\end{array}
\quad
\begin{array}{c}
\text{f} \\
\downarrow \\
\text{c} \\
\end{array}
\quad
\begin{array}{c}
\text{f} \\
\downarrow \\
\bot \\
\end{array}
\]

In particular, \leq_{\bot}^2 is not a complete semilattice!
Avoiding Sharing

Definition (injective \perp-homomorphisms)
For all $g, h \in G^\infty(\Sigma_{\perp})$, let $g \leq^2_{\perp} h$ be defined iff there is some $\varphi: g \rightarrow_{\perp} h$ injective on all (non-\perp-) nodes.

Greatest lower bounds w.r.t. \leq^2_{\perp}

```
f
  /\c
 c   c
 ,   ,
```

```
f
  /\c
 c   c
≥^2_{\perp}
```

```
f
  /\c
 c   c
 ,   ,
```

```
f
  /\⊥
 ⊥   ⊥
```

In particular, \leq^2_{\perp} is not a complete semilattice!
Avoiding Sharing

Definition (injective \(\bot\)-homomorphisms)

For all \(g, h \in \mathcal{G}^\infty(\Sigma_\bot)\), let \(g \leq^2_\bot h\) be defined iff there is some \(\varphi: g \rightarrow_\bot h\) injective on all (non-\(\bot\)) nodes.

Greatest lower bounds w.r.t. \(\leq^2_\bot\)

In particular, \(\leq^2_\bot\) is not a complete semilattice!
Avoiding Sharing

Definition (injective \(\bot \)-homomorphisms)
For all \(g, h \in G^\infty(\Sigma_\bot) \), let \(g \leq^2_\bot h \) be defined iff there is some \(\varphi: g \to_\bot h \) injective on all (non-\(\bot \)-) nodes.

Greatest lower bounds w.r.t. \(\leq^2_\bot \)

In particular, \(\leq^2_\bot \) is not a complete semilattice!

Theorem

The pair \((G^\infty_\Sigma(\Sigma_\bot), \leq^2_\bot) \) forms a complete partial order.
Maintaining Sharing

Goal

\[g \preceq^G \bot h \text{ iff } g \text{ is isomorphic to initial part of } h \text{ above } \bot \text{'s in } g \]
Maintaining Sharing

Goal

\[g \leq^G \bot h \text{ iff } g \text{ is isomorphic to initial part of } h \text{ above } \bot \text{'s in } g \]

What is sharing?

a node \(n \) is shared if it is reachable via multiple paths from the root

the set of all paths \(P(g(n)) \) to node describes its sharing
Maintaining Sharing

Goal

\(g \leq^G \perp h \) iff \(g \) is isomorphic to initial part of \(h \) above \(\perp \)'s in \(g \)

1. \(g \)
2. \(h \)
Maintaining Sharing

Goal

\[g \leq^G \perp h \iff g \text{ is isomorphic to initial part of } h \text{ above } \perp \text{'s in } g \]

Diagram:

- Node \(g \) is shared if it is reachable via multiple paths from the root.
- The set of all paths \(P_g(n) \) to node describes its sharing.

Diagram illustrating the relationship between \(g \) and \(h \) with \(\leq^G \perp \).
Maintaining Sharing

Goal

\[g \preceq^G h \iff g \text{ is isomorphic to initial part of } h \text{ above } \bot \text{'s in } g \]

What is sharing?

A node is shared if it is reachable via multiple paths from the root.

The set of all paths \(P_g(n) \) to a node describes its sharing.
Maintaining Sharing

Goal

\[g \leq^g_\bot h \iff g \text{ is isomorphic to initial part of } h \text{ above } \bot \text{'s in } g \]

What is sharing?

A node \(n \) is shared if it is reachable via multiple paths from the root.

The set of all paths \(P_g(n) \) to node describes its sharing.

Diagram:
- Node \(g \)
- Node \(h \)
- Arrow indicating preservation of sharing from \(g \) to \(h \)

Maintaining Sharing

Goal

\[g \preceq^G h \text{ iff } g \text{ is isomorphic to initial part of } h \text{ above } ' \perp ' \text{’s in } g \]

What is sharing?

- A node \(n \) is shared if it is reachable via \textbf{multiple paths} from the root
- The set of all paths \(P_g(n) \) to a node describes its sharing
Sharing-Preserving \bot-homomorphisms

Definition

For all $g, h \in G^\infty(\Sigma_\bot)$, let $g \leq^3 \bot h$ be defined iff there is some $\varphi: g \rightarrow \bot h$ with $P_g(n) = P_h(\varphi(n))$ for all non-\bot-nodes n in g.

Theorem

The pair $(G^\infty(\Sigma_\bot), \leq^3 \bot)$ forms a complete semilattice.

$\leq^3 \bot$ is quite restrictive!
Sharing-Preserving \(\bot \)-homomorphisms

Definition

For all \(g, h \in G^\infty(\Sigma_\bot) \), let \(g \leq^\bot_3 h \) be defined iff there is some \(\varphi : g \rightarrow \bot h \) with \(P_g(n) = P_h(\varphi(n)) \) for all non-\(\bot \)-nodes \(n \) in \(g \).

Theorem

The pair \((G_C^\infty(\Sigma_\bot), \leq^\bot_3) \) forms a *complete semilattice*.
Sharing-Preserving \(\bot \)-homomorphisms

Definition
For all \(g, h \in \mathcal{G}^\infty(\Sigma_\bot) \), let \(g \leq^3_{\bot} h \) be defined iff there is some \(\varphi : g \to_{\bot} h \) with \(P_g(n) = P_h(\varphi(n)) \) for all non-\(\bot \)-nodes \(n \) in \(g \).

Theorem
The pair \((\mathcal{G}_C^\infty(\Sigma_\bot), \leq^3_{\bot}) \) forms a complete semilattice.

\(\leq^3_{\bot} \) is quite restrictive!
Sharing-Preserving \bot-homomorphisms

Definition
For all $g, h \in G^\infty(\Sigma_\bot)$, let $g \leq^3 \bot h$ be defined iff there is some $\varphi: g \to \bot h$ with $P_g(n) = P_h(\varphi(n))$ for all non-\bot-nodes n in g.

Theorem
The pair $(G^\infty_C(\Sigma_\bot), \leq^3_\bot)$ forms a complete semilattice.

\leq^3_\bot is quite restrictive!

```
  h    h
 /\   /\  \\
 h  h  h
```

Sharing-Preserving \(\bot\)-homomorphisms

Definition

For all \(g, h \in G^\infty(\Sigma_\bot)\), let \(g \leq^3_\bot h\) be defined iff there is some \(\varphi : g \rightarrow_\bot h\) with \(P_g(n) = P_h(\varphi(n))\) for all non-\(\bot\)-nodes \(n\) in \(g\).

Theorem

The pair \((G^\infty_C(\Sigma_\bot), \leq^3_\bot)\) forms a complete semilattice.

\(\leq^3_\bot\) is quite restrictive!
Sharing-Preserving \(\perp \)-homomorphisms

Definition

For all \(g, h \in G^\infty(\Sigma_\perp) \), let \(g \leq^3 \perp h \) be defined iff there is some \(\varphi : g \rightarrow \perp h \) with \(P_g(n) = P_h(\varphi(n)) \) for all non-\(\perp \)-nodes \(n \) in \(g \).

Theorem

The pair \((G^\infty_C(\Sigma_\perp), \leq^3 \perp)\) forms a complete semilattice.

\(\leq^3 \perp \) is quite restrictive!

![Diagram](image)
Sharing-Preserving \bot-homomorphisms

Definition

For all $g, h \in G^\infty(\Sigma_\bot)$, let $g \leq_\bot^3 h$ be defined iff there is some $\varphi : g \to h$ with $P_g(n) = P_h(\varphi(n))$ for all non-\bot-nodes n in g.

Theorem

The pair $(G^\infty_C(\Sigma_\bot), \leq_\bot^3)$ forms a complete semilattice.

\leq_\bot^3 is quite restrictive!

Diagram of nodes and edges illustrating the relations and the structure of the semilattice.
Acyclic Sharing

Acyclic Paths

We only consider the set $\mathcal{P}_g^a(n)$ of **minimal paths** to n.
Acyclic Sharing

Acyclic Paths

We only consider the set $\mathcal{P}_g^a(n)$ of minimal paths to n.

Definition

For all $g, h \in G^\infty(\Sigma_\bot)$, let $g \preceq_4 h$ be defined iff there is some $\varphi: g \rightarrow_\bot h$ with $\mathcal{P}_g(n) = \mathcal{P}_g(\varphi(n))$ for all non-\bot-nodes n in g.
Acyclic Sharing

Acyclic Paths
We only consider the set \(P_g^a(n) \) of minimal paths to \(n \).

Definition
For all \(g, h \in G^\infty(\Sigma_\bot) \), let \(g \leq_{\bot}^4 h \) be defined iff there is some \(\varphi: g \to_{\bot} h \) with \(P_g(n) = P_g(\varphi(n)) \) for all non-\(\bot \)-nodes \(n \) in \(g \).

Theorem
The pair \((G^\infty_C(\Sigma_\bot), \leq_{\bot}^4) \) forms a complete semilattice.
What Have We Gained?

Insight into convergence over term graphs

- Partial orders honour the rich structure of term graphs.
- All discussed partial orders specialise to $\leq \bot$ on terms.

Theorem (total p-convergence = weak convergence)

For every reduction S in a GRS the following equivalence holds:

$S: g \hookrightarrow h$ is total if $S: g \hookrightarrow h$. (weak convergence)
What Have We Gained?

Insight into convergence over term graphs
- partial orders honour the rich structure of term graphs
- all discussed partial orders specialise to \leq_{\bot} on terms

complete semilattices induce a complete metric space
- complete semilattices induce a canonical metric (except for \leq_{\bot}^1)
- common structure of two term graphs g and h: $g \sqcap_{\bot} h$
- metric distance $d(g, h) = 2^{-d}$, where $d = \bot$-depth($g \sqcap_{\bot} h$)
- resulting complete metric specialises to the metric d on terms
What Have We Gained?

Insight into convergence over term graphs
- partial orders honour the rich structure of term graphs
- all discussed partial orders specialise to \leq_{\bot} on terms

Complete semilattices induce a complete metric space
- complete semilattices induce a canonical metric (except for $\leq_{1_{\bot}}$)
- common structure of two term graphs g and h: $g \sqcap_{\bot} h$
- metric distance $d(g, h) = 2^{-d}$, where $d = \bot$-depth($g \sqcap_{\bot} h$)
- resulting complete metric specialises to the metric d on terms

Theorem (total p-convergence = m-convergence)

For every reduction S in a GRS the following equivalence holds:

$S : g \xrightarrow{p} h$ is total iff $S : g \xrightarrow{m} h$. (weak convergence)
Next Steps

Partial order $\leq_{1\bot}$ based on \bot-homomorphisms

- it behaves weird but it might still be suited for convergence e.g.
Partial order \leq_1^\perp based on \perp-homomorphisms

- it behaves weird but it might still be suited for convergence, e.g.

```
from
\downarrow
0
```
Next Steps

Partial order \leq^{1}_{\bot} based on \bot-homomorphisms

- it behaves weirdly but it might still be suited for convergence, e.g.

```
0   0   from
\downarrow
\quad \quad \quad \quad
\quad \quad \quad \quad
\quad \quad \quad \quad
\quad \quad \quad \quad
s
```
Next Steps

Partial order \preceq_1 based on \perp-homomorphisms

- it behaves weird but it might still be suited for convergence, e.g.

```
from 0 0 from 0:
    ↓  ↓  ↓  ↓
     s  s  s  s
```

Strong convergence on term graphs

what is a proper notion of strong convergence?

using the partial order approach might again be helpful
Next Steps

Partial order \leq^1_\bot based on \bot-homomorphisms

- it behaves weirdly but it might still be suited for convergence, e.g.

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
\downarrow & & & \\
s & \rightarrow & s & \rightarrow \\
\end{array}
\]
Next Steps

Partial order $\leq^1 \bot$ based on \bot-homomorphisms

- it behaves weird but it might still be suited for convergence, e.g.
- is there a metric space counterpart?
Next Steps

Partial order \leq_{\bot} based on \bot-homomorphisms

- it behaves weird but it might still be suited for convergence e.g.
- is there a metric space counterpart?

\[
\begin{array}{cccccc}
f & \rightarrow & f & \rightarrow & f & \rightarrow \ f \\
\downarrow & & \downarrow & & \downarrow & \\
c & & c & & c & \\
\end{array}
\]
Next Steps

Partial order \leq^{1}_\perp based on \perp-homomorphisms

- it behaves weird but it might still be suited for convergence e.g.
- is there a metric space counterpart?

\[
\begin{array}{ccccccccc}
 & f & \rightarrow & f & \rightarrow & f & \rightarrow & f & \rightarrow & \ldots & f \\
 c & \rightarrow & c
\end{array}
\]
Next Steps

Partial order \leq^1_{\bot} based on \bot-homomorphisms

- it behaves weird but it might still be suited for convergence e.g.
- is there a metric space counterpart?

\[
\begin{array}{ccccccc}
 & f & \rightarrow & f \\
 & c & \downarrow & c \\
 & c & \downarrow & c \\
 \end{array}
\]

Strong convergence on term graphs

- what is a proper notion of strong convergence?
- using the partial order approach might again be helpful
Outline

1. Infinitary Term Rewriting

2. Term Graph Rewriting
 - Partial Order Model of Infinitary Rewriting
 - Convergence on Term Graphs

3. Outlook
Back to Term Graph Rewriting

Partial order approach to infinitary term rewriting

- more fine grained notion of convergence
- reductions always converge \(\rightsquigarrow \) semantics
- naturally captures meaningless terms
Strong Convergence on Orthogonal System

Metric convergence

- Normal forms are *unique*.
- However: terms might have **no normal forms** (only reductions that do not converge).

Infinite confluence:

Every term has a normal form reachable by a possibly infinite reduction.

Unique normal forms!
Strong Convergence on Orthogonal System

Metric convergence

- normal forms are unique
- however: terms might have no normal forms (only reductions that do not converge)

With partial order model, we gain normalisation and thus confluence.

Infinitary confluence

```
  t ----> t_1
  |      |
  v      v
  t_2 ----> t_3
```

Infinitary normalisation

```
t --> t~
```

Every term has a normal form reachable by a possibly infinite reduction.
Strong Convergence on Orthogonal System

Metric convergence

- normal forms are **unique**
- however: terms might have **no normal forms** (only reductions that do not converge)

With partial order model, we gain normalisation and thus **confluence**.

Infinitary confluence

\[t \xrightarrow{} t_1 \xrightarrow{} t_3 \]

\[t \xrightarrow{} t_2 \xrightarrow{} t_3 \]

Infinitary normalisation

\[t \xrightarrow{} \bar{t} \xrightarrow{} \]

Every term has a normal form reachable by a possibly infinite reduction.

Unique normal forms!
Meaningless Terms

<table>
<thead>
<tr>
<th>Böhm extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given a TRS \mathcal{R}, its Böhm extension $\mathcal{B}_\mathcal{R}$ is obtained by adding rules of the form $r \rightarrow \perp$, where r are root-active terms</td>
</tr>
</tbody>
</table>
Böhm extensions

Given a TRS \mathcal{R}, its Böhm extension $\mathcal{B}_\mathcal{R}$ is obtained by adding rules of the form $r \rightarrow \bot$, where r are root-active terms.

Unique normal forms

- Böhm extensions are used to obtain unique normal forms (Böhm trees).
- $\mathcal{B}_\mathcal{R}$ is infinitary normalising and confluent.
Meaningless Terms

Böhm extensions
Given a TRS \mathcal{R}, its Böhm extension $B_\mathcal{R}$ is obtained by adding rules of the form $r \rightarrow \bot$, where r are root-active terms.

Unique normal forms
- Böhm extensions are used to obtain unique normal forms (Böhm trees)
- $B_\mathcal{R}$ is infinitary normalising and confluent

Theorem (m-convergence + Böhm extension = p-convergence)
If \mathcal{R} is an orthogonal TRS and B the Böhm extension of \mathcal{R}, then

$$s \overset{p}{\Rightarrow}_\mathcal{R} t \quad \text{iff} \quad s \overset{m}{\Rightarrow}_B t.$$
Further Steps

Strong convergence on term graphs

- unique normal forms \rightsquigarrow Böhm-graphs
- correspondence infinitary term rewriting \iff cyclic term graph rewriting
Further Steps

Strong convergence on term graphs
- unique normal forms \leadsto Böhm-graphs
- correspondence infinitary term rewriting \Leftrightarrow cyclic term graph rewriting

Higher-Order Systems
- application to λ-calculus with letrec?