Convergence in Infinitary Term Graph Rewriting Systems is Simple

Patrick Bahr
paba@diku.dk

University of Copenhagen
Department of Computer Science

7th International Workshop on Computing with Terms and Graphs
Rome, Italy, March 23rd, 2013
Term Graph Rewriting vs. Infinitary Rewriting

Pick one to avoid the other.
Term Graph Rewriting vs. Infinitary Rewriting

Pick one to avoid the other.

Pick **term graph rewriting**
- finite representation of infinite terms (via cycles)
- finite representation of infinite rewrite sequences

\[
\begin{align*}
\text{f} &\quad \text{g} &\quad \text{h} \\
b &\quad &\quad \\
\end{align*}
\]
Term Graph Rewriting vs. Infinitary Rewriting

Pick one to avoid the other.

Pick term graph rewriting
- finite representation of infinite terms (via cycles)
- finite representation of infinite rewrite sequences

Pick infinitary rewriting
- avoid dealing with term graphs
- work on the unravelling instead

![Diagram](image)
A common formalism

study *correspondences* between infinitary TRSs and finitary GRSs
Infinitary Term Graph Rewriting – What is it for?

A common formalism
study correspondences between infinitary TRSs and finitary GRSs

Lazy evaluation
- infinitary term rewriting only covers non-strictness
- however: lazy evaluation = non-strictness + sharing
Infinitary Term Graph Rewriting – What is it for?

A common formalism
study *correspondences* between infinitary TRSs and finitary GRSs

Lazy evaluation
- infinitary term rewriting *only covers non-strictness*
- however: lazy evaluation = non-strictness + sharing

Towards infinitary lambda calculi with letrec
- Ariola & Blom. *Skew confluence and the lambda calculus with letrec.*
- the calculus is *non-confluent*
- but there is a notion of *infinite normal forms*
Our Previous Approach [RTA ’11]

Profile

- weak convergence
- two modes of convergence: metric & partial order
Our Previous Approach [RTA ’11]

Profile

- weak convergence
- two modes of convergence: metric & partial order
- result:
 - correspondence between metric & partial order convergence
 - soundness w.r.t. infinitary term rewriting (sorta kinda)
Our Previous Approach

Profile

- weak convergence
- two modes of convergence: metric & partial order
- result: correspondence between metric & partial order convergence
 - soundness w.r.t. infinitary term rewriting (sorta kinda)

metric convergence ⇔ partial order convergence “without ⊥’s”
Our Previous Approach [RTA '11]

Profile

- weak convergence
- two modes of convergence: metric & partial order
- result: correspondence between metric & partial order convergence
 soundness w.r.t. infinitary term rewriting (sorta kinda)

convergence and unravelling commute:

\[
\begin{align*}
S(G) \xrightarrow{\lim} G & \\
U \Downarrow & \\
S(T) \xrightarrow{\lim} T
\end{align*}
\]
Our Previous Approach [RTA ’11]

Profile

- weak convergence
- two modes of convergence: metric & partial order
- result: ▶ correspondence between metric & partial order convergence
 ▶ soundness w.r.t. infinitary term rewriting (sorta kinda)
- problem: complicated; difficult to analyse; lack of completeness
Our Previous Approach [RTA ’11]

Profile

- weak convergence
- two modes of convergence: metric & partial order
- result: correspondence between metric & partial order convergence
 soundness w.r.t. infinitary term rewriting (sorta kinda)
- problem: complicated; difficult to analyse; lack of completeness

Term graph rewriting with \(\text{from}(x) \rightarrow x :: \text{from}(s(x)) \)

from
 ↓
0
Our Previous Approach [RTA ’11]

Profile

- weak convergence
- two modes of convergence: metric & partial order
- result: correspondence between metric & partial order convergence
 - soundness w.r.t. infinitary term rewriting (sorta kinda)
- problem: complicated; difficult to analyse; lack of completeness

Term graph rewriting with \(\text{from}(x) \rightarrow x :: \text{from}(s(x)) \)

```
from
\downarrow
0
\rightarrow
::
\downarrow
\downarrow
0
from
\downarrow
s
```
Our Previous Approach [RTA ’11]

Profile

- weak convergence
- two modes of convergence: metric & partial order
- result: correspondence between metric & partial order convergence
 - soundness w.r.t. infinitary term rewriting (sorta kinda)
- problem: complicated; difficult to analyse; lack of completeness

Term graph rewriting with \(\text{from}(x) \rightarrow x :: \text{from}(s(x)) \)
Our Previous Approach [RTA ’11]

Profile

- weak convergence
- two modes of convergence: metric & partial order
- result:
 - correspondence between metric & partial order convergence
 - soundness w.r.t. infinitary term rewriting (sorta kinda)
- problem: complicated; difficult to analyse; lack of completeness

Term graph rewriting with \(\text{from}(x) \rightarrow x :: \text{from}(s(x)) \)
Our Previous Approach [RTA '11]

Profile

- weak convergence
- two modes of convergence: metric & partial order
- result: correspondence between metric & partial order convergence
 - soundness w.r.t. infinitary term rewriting (sorta kinda)
- problem: complicated; difficult to analyse; lack of completeness

Term graph rewriting with \(\text{from}(x) \to x::\text{from}(s(x)) \)
Our New Approach

<table>
<thead>
<tr>
<th>Less restrictive structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d_R(g, h) \geq d_S(g, h)$</td>
</tr>
</tbody>
</table>
Our New Approach

Less restrictive structures

\[d_R(g, h) \geq d_S(g, h) \]

old

new
Our New Approach

Less restrictive structures

\[d_R(g, h) \geq d_S(g, h) \]

\[\leadsto \text{coarser topology (i.e. more sequences converge)} \]
Our New Approach

Less restrictive structures

- \(d_R(g, h) \geq d_S(g, h) \)
 ~\(\Rightarrow \) coarser topology (i.e. more sequences converge)

- \(g \leq^R h \implies g \leq^S h \)
Our New Approach

Less restrictive structures

- \(d_R(g, h) \geq d_S(g, h) \)
 \(\Rightarrow \) coarser topology (i.e. more sequences converge)

- \(g \leq_R h \implies g \leq_S h \)
 \(\Rightarrow \) sequences converge to term graphs “with fewer \(\perp \)’s”
Our New Approach

Less restrictive structures

- \(d_R(g, h) \geq d_S(g, h) \)
 \(\leadsto \) coarser topology (i.e. more sequences converge)

- \(g \leq_R h \implies g \leq_S h \)
 \(\leadsto \) sequences converge to term graphs “with fewer \(\perp \)’s”

Term graph rewriting with \(\text{from}(x) \rightarrow x :: \text{from}(s(x)) \)
Outline

1. Introduction
 - Goals
 - A Different Approach

2. Weak Convergence

3. Strong Convergence
Metric Infinitary Term Rewriting

Complete metric on terms

\[d(s, t) = 2^{-\text{sim}(s, t)} \]

\[\text{sim}(s, t) = \text{maximum depth } d \text{ s.t. truncated at depth } d, \text{ s and t are equal} \]
Metric Infinitary Term Rewriting

Complete metric on terms

\[d(s, t) = 2^{-\text{sim}(s, t)} \]

\[\text{sim}(s, t) = \text{maximum depth } d \text{ s.t. truncated at depth } d, \text{ } s \text{ and } t \text{ are equal} \]

Example

\[f \]
\[a \quad f \]
\[b \quad c \]
\[\underline{s} \]

\[f \]
\[a \quad e \]
\[a \]
\[\underline{t} \]
Metric Infinitary Term Rewriting

Complete metric on terms

\[d(s, t) = 2^{-\text{sim}(s, t)} \]

\(\text{sim}(s, t) = \text{maximum depth } d \text{ s.t. truncated at depth } d, s \text{ and } t \text{ are equal} \)

Example

\[
\begin{array}{c}
\text{f} \\
\downarrow \\
\text{a} \\
\downarrow \\
\text{b} \\
\downarrow \\
\text{s}
\end{array}
\quad
\begin{array}{c}
\text{f} \\
\downarrow \\
\text{a} \\
\downarrow \\
\text{a} \\
\downarrow \\
\text{t}
\end{array}
\]

\[
\begin{array}{c}
\text{f} \\
\downarrow \\
\text{f} \\
\downarrow \\
\text{a} \\
\downarrow \\
\text{e} \\
\downarrow \\
\text{c}
\end{array}
\quad
\begin{array}{c}
\text{f} \\
\downarrow \\
\text{a} \\
\downarrow \\
\text{a} \\
\downarrow \\
\text{a}
\end{array}
\]
Complete metric on terms

\[d(s, t) = 2^{-\text{sim}(s,t)} \]

\(\text{sim}(s, t) = \text{maximum depth } d \text{ s.t. truncated at depth } d, \text{ s and t are equal} \)

Example

\[f \]
\[a \]
\[b \]
\[s \]
\[c \]
\[t \]
\[a \]
\[e \]
\[f \]
\[a \]
Metric Infinitary Term Rewriting

Complete metric on terms

\[d(s, t) = 2^{-\text{sim}(s, t)} \]

\[\text{sim}(s, t) = \text{maximum depth } d \text{ s.t. truncated at depth } d, s \text{ and } t \text{ are equal} \]

Example

```
  f
  / \    \\
 a   f   a   e
  |   |   |   |
 b   c   e   a
 s   t
```

1 level
Metric Infinitary Term Rewriting

Complete metric on terms

\[d(s, t) = 2^{-\text{sim}(s,t)} \]

\(\text{sim}(s, t) = \text{maximum depth } d \text{ s.t. truncated at depth } d, s \text{ and } t \text{ are equal} \)

Example

\[d(\underbrace{s}_{1 \text{ level}}, \underbrace{t}_{1 \text{ level}}) = 2^{-1} \]
Metric Infinitary Term Rewriting

Complete metric on terms

\[d(s, t) = 2^{-\text{sim}(s, t)} \]

\(\text{sim}(s, t) = \text{maximum depth } d \text{ s.t. truncated at depth } d, s \text{ and } t \text{ are equal} \)

Example

\[d(s, t) = 2^{-1} \]
Metric Infinitary Term Rewriting

Complete metric on terms

\[d(s, t) = 2^{-\text{sim}(s, t)} \]

\(\text{sim}(s, t) = \text{maximum depth } d \text{ s.t. truncated at depth } d, s \text{ and } t \text{ are equal} \)

Example

\[
\begin{array}{c}
\text{1 level} \\
\hline
\text{f} \quad \text{f} \\
\downarrow \quad \downarrow \\
\text{a} \quad \text{a} \\
\downarrow \quad \downarrow \\
\text{b} \quad \text{c} \\
\downarrow \quad \downarrow \\
\text{f} \quad \text{f} \\
\downarrow \quad \downarrow \\
\text{a} \quad \text{e} \\
\end{array}
\]

\[d(s, t) = 2^{-1} \]

\[
\begin{array}{c}
\text{2 levels} \\
\hline
\text{f} \\
\downarrow \\
\text{a} \\
\downarrow \\
\text{a} \\
\end{array}
\]

\[
\begin{array}{c}
\text{f} \\
\downarrow \\
\text{a} \\
\end{array}
\]

\[
\begin{array}{c}
\text{f} \\
\downarrow \\
\text{a} \\
\end{array}
\]

\[d(s', t') = 2^{-1} \]
Metric Infinitary Term Rewriting

Complete metric on terms

\[d(s, t) = 2^{-\text{sim}(s, t)} \]

\[\text{sim}(s, t) = \text{maximum depth } d \text{ s.t. truncated at depth } d, \text{ s and t are equal} \]

Example

\[d(s, t) = 2^{-1} \]
Metric Infinitary Term Rewriting

Complete metric on terms

\[d(s, t) = 2^{-\text{sim}(s,t)} \]

\[\text{sim}(s, t) = \text{maximum depth } d \text{ s.t. truncated at depth } d, \text{ s and t are equal} \]

Example

\[d(s, t) = 2^{-1} \]
Metric Infinitary Term Rewriting

Complete metric on terms

\[d(s, t) = 2^{-\text{sim}(s, t)} \]

\[\text{sim}(s, t) = \text{maximum depth } d \text{ s.t. truncated at depth } d, \text{ } s \text{ and } t \text{ are equal} \]

Example

\[d(s, t) = 2^{-1} \]

\[d(s', t') = 2^{-2} \]
Complete metric on terms

\[d(g, h) = 2^{-\text{sim}(g, h)} \]

\[\text{sim}(g, h) = \text{maximum depth } d \text{ s.t. truncated at depth } d, \ g \text{ and } h \text{ are equal} \]

Example

\[d(g, h) = 2^{-1} \]

\[d(g', h') = 2^{-2} \]
Partial Order Infinitary Term Rewriting

Partial order on terms

- **partial terms**: terms with additional constant ⊥ (read as “undefined”)
- **partial order** ≤⊥ reads as: “is less defined than”
- ≤⊥ is a **complete semilattice** (= cpo + glbs of non-empty sets)
Partial Order Infinitary Term Rewriting

Partial order on terms
- **partial terms**: terms with additional constant ⊥ (read as “undefined”)
- partial order \leq_\bot reads as: “is less defined than”
- \leq_\bot is a complete semilattice (＝ cpo + glbs of non-empty sets)

Convergence
- formalised by the limit inferior:
 \[
 \liminf_{\iota \to \alpha} t_\iota = \bigsqcup_{\beta < \alpha} \bigcap_{\beta \leq \iota < \alpha} t_\iota
 \]
- intuition: eventual persistence of nodes of the terms
A Partial Order on Term Graphs

Specialise on terms

- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?
A Partial Order on Term Graphs

Specialise on terms

- Consider terms as **term trees** (i.e. term graphs with tree structure)
- How to define the partial order \leq_{\perp} on term trees?

\perp-homomorphisms $\phi: g \rightarrow_{\perp} h$

- homomorphism condition suspended on \perp-nodes
- allow mapping of \perp-nodes to arbitrary nodes
- same mechanism describing matching in term graph rewriting
A Partial Order on Term Graphs

Specialise on terms
- Consider terms as term trees (i.e. term graphs with tree structure)
- How to define the partial order \leq_\perp on term trees?

\perp-homomorphisms $\phi : g \rightarrow_\perp h$
- homomorphism condition suspended on \perp-nodes
- allow mapping of \perp-nodes to arbitrary nodes
- same mechanism describing matching in term graph rewriting

Definition (Simple partial order \leq^S_\perp on term graphs)
For all $g, h \in \mathcal{G}^\infty(\Sigma_\perp)$, let $g \leq^S_\perp h$ iff there is some $\phi : g \rightarrow_\perp h$.
Properties of Completions

Term graph rewriting with $\text{from}(x) \to x :: \text{from}(s(x))$

Theorem (metric completion of term graphs)

The metric completion of $(\mathcal{G}_C(\Sigma), \mathcal{d}_S)$ is the metric space $(\mathcal{G}_\infty C(\Sigma), \mathcal{d}_S)$.

Theorem (ideal completion of term graphs)

The ideal completion of $(\mathcal{G}_C(\Sigma \perp), \leq S \perp)$ is order isomorphic to $(\mathcal{G}_\infty C(\Sigma \perp), \leq S \perp)$.
Properties of Completions

Term graph rewriting with $\text{from}(x) \rightarrow x :: \text{from}(s(x))$

Theorem (metric completion of term graphs)

The metric completion of $(G_C(\Sigma), d_S)$ is the metric space $(G_C^\infty(\Sigma), d_S)$.
Properties of Completions

Term graph rewriting with $\text{from}(x) \rightarrow x :: \text{from}(s(x))$

Theorem (metric completion of term graphs)

The metric completion of $(G_C(\Sigma), d_S)$ is the metric space $(G_C^\infty(\Sigma), d_S)$.

Theorem (ideal completion of term graphs)

The ideal completion of $(G_C(\Sigma_\bot), \leq_S)$ is order isomorphic to $(G_C^\infty(\Sigma_\bot), \leq_S)$.
Metric vs. Partial Order Convergence

Partial order convergence

\[f \rightarrow f \rightarrow f \rightarrow f \rightarrow f \rightarrow \ldots \]

\[c \rightarrow c \rightarrow c \rightarrow c \rightarrow c \rightarrow c \]
Metric vs. Partial Order Convergence

Partial order convergence:

\[f \quad \rightarrow \quad f \quad \rightarrow \quad f \quad \rightarrow \quad f \quad \rightarrow \quad f \quad \cdots \quad f \]

\[c \quad c \]

Theorem

Let \(S \) be a reduction in a GRS:

\[S : g, \quad \rightarrow \quad m \quad R \quad h = \Rightarrow \quad \iff \]

Why???
Metric vs. Partial Order Convergence

Partial order convergence

<table>
<thead>
<tr>
<th>f</th>
<th>→</th>
<th>f</th>
<th>→</th>
<th>f</th>
<th>→</th>
<th>f</th>
<th>→</th>
<th>f</th>
<th>→</th>
<th>f</th>
<th>→</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>→</td>
<td>C</td>
<td>→</td>
<td>C</td>
<td>→</td>
<td>C</td>
<td>→</td>
<td>C</td>
<td>→</td>
<td>C</td>
<td>→</td>
<td>C</td>
</tr>
</tbody>
</table>

Why???

Theorem

Let S be a reduction in a GRS R:

$$S : g, \rightarrow m \Rightarrow h \Rightarrow \Rightarrow S : g, \rightarrow p \Rightarrow h \text{ total}$$
Metric vs. Partial Order Convergence

Partial order convergence

\[f \quad \rightarrow \quad \ldots \quad \rightarrow \quad f \]

\[\underbrace{c \quad c \quad c \quad c \quad c \quad c} \quad \underbrace{c \quad c} \]

Why???

Because

\[f \quad \rightarrow \quad f \quad \rightarrow \quad f \quad \rightarrow \quad f \]

\[\underbrace{c \quad c \quad c} \quad \underbrace{c} \]
Metric vs. Partial Order Convergence

Partial order convergence

\[f \rightarrow f \rightarrow f \rightarrow f \rightarrow f \rightarrow \ldots \rightarrow f \]

\[c \rightarrow c \rightarrow c \rightarrow c \rightarrow c \rightarrow c \rightarrow c \]

Why???

Because

\[f \rightarrow f \leq_{S} \perp \rightarrow f \rightarrow f \]
Metric vs. Partial Order Convergence

Partial order convergence

\[f \quad \rightarrow \quad \cdots \quad f \]

\[c \quad c \quad c \quad c \quad c \quad c \quad c \]

Why???

Because

\[f \quad \prec_{\perp}^{S} \quad f \]

\[c \quad c \quad c \]

Theorem

Let \(S \) be a reduction in a GRS \(\mathcal{R} \):

\[S: \ g \overset{m}{\rightarrow}_{\mathcal{R}} h \quad \overset{\checkmark}{\rightarrow} \quad S: \ g \overset{p}{\rightarrow}_{\mathcal{R}} h \text{ total} \]
Metric vs. Partial Order Convergence

Partial order convergence

\[
\begin{array}{cccccc}
 f & \rightarrow & f \\
 c & \downarrow & c
\end{array}
\]

Why???

Because

\[
\begin{array}{c}
 f \\
 c \\
 c
\end{array} \leq_{S} \begin{array}{c}
 f \\
 c
\end{array}
\]

Theorem

Let \(S \) be a reduction in a GRS \(\mathcal{R} \):

\[
S: \ g \xrightarrow{m_{\mathcal{R}}} h \quad \checkmark \quad S: \ g \xrightarrow{p_{\mathcal{R}}} h \text{ total}
\]
Outline

1. Introduction
 - Goals
 - A Different Approach

2. Weak Convergence

3. Strong Convergence
Strong Convergence

Intuition behind strong convergence

- syntactic restriction of convergence
- pretend that the root of the left-hand side and the right-hand side of each rule are distinct
Strong Convergence

Intuition behind strong convergence
- syntactic restriction of convergence
- pretend that the root of the left-hand side and the right-hand side of each rule are distinct

Strong metric convergence
additional restriction: depth of contracted redexes must tend to infinity
Strong Convergence

Intuition behind strong convergence

- syntactic restriction of convergence
- pretend that the root of the left-hand side and the right-hand side of each rule are distinct

Strong metric convergence

additional restriction: depth of contracted redexes must tend to infinity

Strong partial order convergence

modify limit formation: replace each redex with ⊥
Consequences

Partial order convergence

\[f \rightarrow f \rightarrow f \rightarrow f \rightarrow \ldots \]

\[C \rightarrow \ldots \]
Consequences

Partial order convergence

\[f \rightarrow f \rightarrow f \rightarrow f \rightarrow \ldots \]

Rules that produce this rewrite sequence

\[\rho_1: \ f \rightarrow f \]
\[\rho_2: \ f \rightarrow f \]
Consequences

Partial order convergence

\[f \rightarrow f \rightarrow f \rightarrow f \rightarrow f \rightarrow \ldots \rightarrow \perp \]

Rules that produce this rewrite sequence

\[\rho_1 : f \rightarrow f \]

\[\rho_2 : f \rightarrow f \]
Consequences

Partial order convergence

\[f \rightarrow f \rightarrow f \rightarrow f \rightarrow \ldots \rightarrow \perp \]

Rules that produce this rewrite sequence

\[\rho_1 : f \rightarrow f \quad \rho_2 : f \rightarrow f \]

Theorem

Let \(S \) be a reduction in a GRS \(\mathcal{R} \):

\[S : g \xrightarrow{m}{\mathcal{R}} h \quad \iff \quad S : g \xrightarrow{p}{\mathcal{R}} h \text{ total} \]
Examples

Term graph rewriting with $\text{from}(x) \rightarrow x :: \text{from}(s(x))$
Examples

Term graph rewriting with $\text{from}(x) \rightarrow x :: \text{from}(s(x))$

\[
\begin{array}{c}
\bot \\
\Rightarrow \\
0 \Downarrow \\
\Rightarrow \\
0 :: \\
\Rightarrow \\
\ldots \\
\Downarrow \\
0 :: \\
\Rightarrow \\
0 :: s \\
\Rightarrow \\
\ldots \\
\Downarrow \\
0 :: s \\
\Rightarrow \\
\ldots \\
\Downarrow \\
0 :: s \\
\Rightarrow \\
\ldots
\end{array}
\]
Examples

Term graph rewriting with $\text{from}(x) \rightarrow x :: \text{from}(s(x))$

Term graph rewriting with $h(x, y) \rightarrow h(y, x)$
Examples

Term graph rewriting with $\text{from}(x) \rightarrow x :: \text{from}(s(x))$

```
\[
\begin{array}{cccc}
  & & &
  \downarrow & \rightarrow & \downarrow & \rightarrow & \cdots & \downarrow & \\
  & & & & & & & & &
  & & 0 & \downarrow & \rightarrow & 0 & \rightarrow & 0 & \rightarrow & 0 \\
  & & & & & & & & &
  & & & & & s & \rightarrow & & s & \\
  & & & & & & & & &
  & & & & & & & \downarrow & & \downarrow & \\
  & & & & & & & & &
  & & & & & & & c & & c \\
\end{array}
\]
```

Term graph rewriting with $h(x, y) \rightarrow h(y, x)$

```
\[
\begin{array}{cccc}
  & & &
  f & \rightarrow & f \\
  & & & & & & & & &
  h & g & \rightarrow & h & g \\
  & & & & & & & & &
  c & \rightarrow & c & \rightarrow & c \\
\end{array}
\]
```
Examples

Term graph rewriting with $\text{from}(x) \rightarrow x :: \text{from}(s(x))$

Term graph rewriting with $h(x, y) \rightarrow h(y, x)$
Examples

Term graph rewriting with $\text{from}(x) \rightarrow x :: \text{from}(s(x))$

```
0 ⊥ 0 :: s ⊥ 0 :: s
```

Term graph rewriting with $h(x, y) \rightarrow h(y, x)$

```
f g h
  \downarrow  \downarrow
  f  h
  \downarrow  \downarrow
  g  c
```

```
f g h
  \downarrow  \downarrow
  f  h
  \downarrow  \downarrow
  g  c
```

```
f g h
  \downarrow  \downarrow
  f  h
  \downarrow  \downarrow
  g  c
```
Examples

Term graph rewriting with $\text{from}(x) \rightarrow x :: \text{from}(s(x))$

Term graph rewriting with $h(x, y) \rightarrow h(y, x)$
Metric vs. Partial Order Approach

Theorem (Soundness of metric convergence)

For every left-linear, left-finite GRS \mathcal{R} we have

\[
\begin{array}{c}
\mathcal{R} \\
U(\cdot) \\
U(\mathcal{R})
\end{array}
\xrightarrow{g}
\xrightarrow{m}
\rightarrow
\begin{array}{c}
h \\
\end{array}
\]

Theorem (Completeness of partial order convergence)

For every orthogonal, left-finite GRS \mathcal{R} we have

\[
\begin{array}{c}
\mathcal{R} \\
U(\cdot) \\
U(\mathcal{R})
\end{array}
\xrightarrow{g}
\xrightarrow{m}
\rightarrow
\begin{array}{c}
h \\
\end{array}
\]

\[U(\cdot)\]
Metric vs. Partial Order Approach

Theorem (Soundness of metric convergence)
For every left-linear, left-finite GRS \mathcal{R} we have

\[
\mathcal{R} \xrightarrow{g} m \xrightarrow{h} \mathcal{R}
\]

Theorem (Completeness of partial order convergence)
For every orthogonal, left-finite GRS \mathcal{R} we have

\[
\mathcal{U}(\cdot) \downarrow \mathcal{U}(\cdot) \quad \mathcal{U}(\mathcal{R}) \xrightarrow{s} m \xrightarrow{t} \mathcal{U}(\mathcal{R})
\]
Metric vs. Partial Order Approach

Theorem (Soundness of partial order convergence)

For every left-linear, left-finite GRS \mathcal{R} we have

\[
\begin{align*}
\mathcal{R} \quad &g \quad p \quad \rightarrow \quad h \\
\mathcal{U}(\cdot) \quad &s \quad p \quad \rightarrow \quad t \\
\mathcal{U}(\mathcal{R}) \quad &
\end{align*}
\]
Metric vs. Partial Order Approach

Theorem (Soundness of partial order convergence)
For every left-linear, left-finite GRS \mathcal{R} we have

\[\overrightarrow{\mathcal{R}} \xrightarrow{g} p \rightarrow h \]
\[\mathcal{U}(\cdot) \]
\[\mathcal{U}(\mathcal{R}) \xrightarrow{s} p \rightarrow t \]

Theorem (Completeness of partial order convergence)
For every orthogonal, left-finite GRS \mathcal{R} we have

\[\mathcal{U}(\mathcal{R}) \xrightarrow{s} p \rightarrow t \]
\[\mathcal{U}(\cdot) \]
\[\mathcal{U}(\cdot) \]
\[\overrightarrow{\mathcal{R}} \xrightarrow{g} \]
Metric vs. Partial Order Approach

Theorem (Soundness of partial order convergence)

For every left-linear, left-finite GRS \mathcal{R} we have

\[
\begin{align*}
\mathcal{R} & \quad g \\
\mathcal{U}(\cdot) & \quad \downarrow \\
\mathcal{U}(\mathcal{R}) & \quad s \\
\end{align*}
\]

\[
\begin{align*}
p & \quad \rightarrow \\
\mathcal{U}(\cdot) & \quad \downarrow \\
t & \quad \\
\end{align*}
\]

\[
\begin{align*}
\mathcal{R} & \quad g \\
\mathcal{U}(\cdot) & \quad \downarrow \\
\mathcal{U}(\mathcal{R}) & \quad s \\
\end{align*}
\]

\[
\begin{align*}
p & \quad \rightarrow \\
h & \quad \\
\end{align*}
\]

Theorem (Completeness of partial order convergence)

For every orthogonal, left-finite GRS \mathcal{R} we have

\[
\begin{align*}
\mathcal{U}(\mathcal{R}) & \quad s \\
\mathcal{U}(\cdot) & \quad \downarrow \\
\mathcal{R} & \quad g \\
\end{align*}
\]

\[
\begin{align*}
p & \quad \rightarrow \\
t & \quad \\
\end{align*}
\]

\[
\begin{align*}
\mathcal{U}(\mathcal{R}) & \quad s \\
\mathcal{U}(\cdot) & \quad \downarrow \\
\mathcal{R} & \quad g \\
\end{align*}
\]

\[
\begin{align*}
p & \quad \rightarrow \\
h & \quad \\
\end{align*}
\]
Metric vs. Partial Order Approach

Theorem (Soundness of partial order convergence)

For every left-linear, left-finite GRS \mathcal{R} we have

\[
\begin{align*}
\mathcal{R} & \quad g \\
\mathcal{U}(\cdot) & \quad \mathcal{U}(\cdot) \\
\mathcal{U}(& \mathcal{R}) \quad s
\end{align*}
\]

\[
\begin{align*}
\rightarrow & \quad p \\
\rightarrow & \quad h
\end{align*}
\]

Theorem (Completeness of partial order convergence)

For every orthogonal, left-finite GRS \mathcal{R} we have

\[
\begin{align*}
\mathcal{U}(\mathcal{R}) & \quad s \\
\mathcal{U}(\cdot) & \quad \mathcal{U}(\cdot) \\
\mathcal{U}(\cdot) & \quad \mathcal{U}(\cdot) \\
\mathcal{R} & \quad g
\end{align*}
\]

\[
\begin{align*}
\rightarrow & \quad p \\
\rightarrow & \quad t \\
\rightarrow & \quad t'
\end{align*}
\]
Conclusions

Simple structures formalising convergence on term graphs

- **intuitive & simple** generalisation of term rewriting counterparts
- the structures are "complete"
- "soundness" of limit & limit inferior (i.e. commutes with unravelling)
- But: weak partial order convergence is somewhat odd
Conclusions

Simple structures formalising convergence on term graphs
- **intuitive & simple** generalisation of term rewriting counterparts
- the structures are “complete”
- “soundness” of limit & limit inferior (i.e. commutes with unravelling)
- But: weak partial order convergence is somewhat odd

Strong convergence
- regain **correspondence** between metric and partial order convergence
- soundness and completeness w.r.t. infinitary term rewriting